On the linear complexity of Legendre-Sidelnikov sequences

نویسنده

  • Ming Su
چکیده

Background • Legendre Sequence For a prime p > 2 let (s n) be the Legendre sequence defined as s n = 1, n p = −1, 0, otherwise, n ≥ 0, where. p denotes the Legendre symbol. • Sidelnikov Sequence Let q be an odd prime power, g a primitive element of F q , and let η denote the quadratic character of F Background • Legendre Sequence For a prime p > 2 let (s n) be the Legendre sequence defined as s n = 1, n p = −1, 0, otherwise, n ≥ 0, where. p denotes the Legendre symbol. • Sidelnikov Sequence Let q be an odd prime power, g a primitive element of F q , and let η denote the quadratic character of F • We consider the n-periodic binary sequence (s i) : s i =      1, if (i mod n) ∈ P, 0, if (i mod n) ∈ Q * , 1− " i p " η(g i +1) 2 , if (i mod n) ∈ R, i ≥ 0, where p is an odd prime and q is the power of an odd prime such that gcd(p, q − 1) = 1. • This new sequence is balanced if p = q. (−1) l − 1 + l p 1 + (−1) (p−1)/2 −η(−g l + 1) (1 + (−1) (p−1)/2+(q−1)/2+l) , l ∈ R, q − 1 |l. • This new sequence is balanced if p = q. (−1) l − 1 + l p 1 + (−1) (p−1)/2 −η(−g l + 1) (1 + (−1) (p−1)/2+(q−1)/2+l) , l ∈ R, q − 1 |l. The linear complexity L(S) over F 2 of a binary sequence (s i) is the shortest length L of a linear recurrence relation over F 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-Error Linear Complexity over Fp of Sidelnikov Sequences

Let p be an odd prime and m be a positive integer. In this paper, we prove that the one-error linear complexity over Fp of Sidelnikov sequences of length p − 1 is ( p+1 2 ) − 1, which is much less than its (zero-error) linear complexity.

متن کامل

On the Lower Bound of the Linear Complexity Over BBF_p of Sidelnikov Sequences

For a Sidelnikov sequence of period pm − 1 we obtain tight lower bounds on its linear complexity L over Fp. In particular, these bounds imply that, uniformly over all p and m, L is close to its largest possible value pm − 1.

متن کامل

On the Linear Complexity of Legendre Sequences - Information Theory, IEEE Transactions on

In this correspondence we determine the linear complexity of all Legendre sequences and the (monic) feedback polynomial of the shortest linear feedback shift register that generates such a Legendre sequence. The result of this correspondence shows that Legendre sequences are quite good from the linear complexity viewpoint.

متن کامل

On the linear complexity of bounded integer sequences over different moduli

We give a relation between the linear complexity over the integers and over the residue rings modulo m of a bounded integer sequence. This relation can be used to obtain a variety of new results for several sequences widely studied in the literature. In particular we apply it to Sidelnikov sequences.

متن کامل

A Modified Jacobi Sequence Construction Using Multi-Rate Legendre Sequences

This paper investigates the generation of a binary Modified Jacobi sequence by means of an additive combination of constituent binary Legendre sequences which are clocked at different rates. These multi-rate combinations demonstrate that sequences of large linear complexity can be generated without resorting to linear feedback shift registers (LFSRs) of large length. Results on the linear compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2015